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Abstract. Using results of a direct numerical simulation (DNS) of 3D turbulence we show that the observed
generalized scaling (i.e. scaling moments versus moments of different orders) is consistent with a lognormal-
like distribution of turbulent energy dissipation fluctuations with moderate amplitudes for all space scales
available in this DNS (beginning from the molecular viscosity scale up to largest ones). Local multifractal
thermodynamics has been developed to interpret the data obtained using the generalized scaling, and a
new interval of space scales with inverse cascade of generalized energy has been found between dissipative
and inertial intervals of scales for sufficiently large values of the Reynolds number.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 47.27.Ak Fundamentals –
47.27.Gs Isotropic turbulence; homogeneous turbulence

1 Introduction

Generalized scaling, i.e. scaling of moments versus mo-
ments of different orders is now widely used for descrip-
tion of the intermittency phenomenon in turbulence [1–7],
in multiparticle production at high energies [8,9], and in
surface roughening processes [10]. It is shown in numer-
ous experiments and numerical simulations that the range
of applicability of the generalized scaling is substantially
larger than that of ordinary scaling, and the generalized
scaling can exist even in situations where the ordinary
scaling cannot be observed at all. The thermodynamic in-
terpretation of the multifractality used for ordinary scal-
ing (see, for instance, [11]) can be expanded in application
to the generalized scaling as well.

In the present paper we use the generalized scaling to
analyze data of a direct numerical simulation (DNS) of
3D turbulence and we show that these data are consis-
tent with lognormal-like distribution of turbulent energy
dissipation fluctuations with moderate amplitudes for all
space scales observed in the DNS (beginning from dissi-
pative scales up to the largest ones). The lognormal dis-
tribution for turbulent energy dissipation was suggested
for the first time by Obukhov and Kolmogorov and then
widely used (see for review [12–14] and references therein),
but due to the difficulties to interpret available data of ex-
periments and numerical simulations many other types of
distributions were also considered as possible for differ-
ent values of the fluctuations amplitude and scales (e.g.
stretched exponential [15], and power-law [16]). Therefore,
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the finding that turbulent energy dissipation fluctuations
with moderate amplitudes possesses lognormal properties
for all observable space scales (larger than molecular vis-
cous dissipation scale) can give a new insight into this
longstanding problem.

Expansion of the multifractal thermodynamics on the
region of space scales where ordinary scaling does not exist
allows, for the first time, to calculate multifractal entropy
depending on space scale for the data obtained in a DNS
of 3D turbulence. Studying this space scale dependence of
multifractal entropy we have found a new interval of scales
located between dissipative and inertial intervals, with un-
usual inverse cascade of the generalized energy for 3D tur-
bulence. This ‘inverse’ interval appears only for sufficiently
large values of Reynolds number (Rλ ≥ 459 according to
the present DNS) and for large order of moments of fluc-
tuations of the velocity increment. The critical multifrac-
tal temperature, for which the ‘inverse’ interval appears
for the first time, scales (decreases) with the Reynolds
number.

The present paper is organized as follows. In Section 2
the generalized scaling for the locally averaged energy dis-
sipation rate is introduced for the lognormal distribution.
Then the scaling exponents of the moments of the lon-
gitudinal velocity increments are derived on the basis of
the locally extended self-similarity method. Section 3 is
devoted to the direct numerical simulation. The scaling
exponents of the longitudinal structure function are cal-
culated. In Section 4 we compare the scaling exponents
calculated for the DNS with the expression resulted from
the lognormal distribution. The agreement is quite sat-
isfactory. The comparison enables us to estimate a local



96 The European Physical Journal B

value of the intermittency factor µ. Interesting things de-
rived from the scale dependence of µ are also presented. In
Section 5 local multifractal thermodynamics is developed.
It is found that the inverse cascade of the generalized en-
ergy can occur for large Reynolds numbers. In Section 6
we summarize what we found in the present work.

2 Generalized scaling in turbulence

For the absolute value of longitudinal velocity increments:
ur = |v(x+ r) − v(x)| (over separation r) the generalized
scaling means

〈(ur)q〉 ∼ 〈(ur)p〉ρ(q,p) (1)

where the scaling exponent ρ(q, p) is some function on q
and p. In spite of the intensive studies and great interest
the nature of the generalized scaling in turbulent flows is
still unclear. It can be shown (see below) that the lognor-
mal distribution itself leads to generalized scaling of the
lognormally distributed quantity. Following Kolmogorov
and Obukhov [12–14] we consider the lognormal distribu-
tion as a possibility for the local average fluctuations of
the turbulent energy dissipation field ε(x)

εr =

∫
Vr
ε(x)dV

Vr
(2)

where Vr is an arbitrary space volume with scale r.
If εr is lognormally distributed, i.e.

P (εr) =
ε−1
r

(2πσ2)1/2
exp

[
− (ln(εr)− a)2

2σ2

]
(3)

then we obtain for moments of εr

〈εqr〉 = eqa+σ2
2 q

2
(4)

or
〈εqr〉
〈εr〉q

= e
σ2
2 q(q−1) (5)

that results in some type of generalized scaling of turbu-
lent energy dissipation

〈εqr〉
〈εr〉q

=
(
〈εpr〉
〈εr〉p

) q(q−1)
p(p−1)

. (6)

Since this generalized scaling describes a more general
class of random variables than the lognormal one, we call
this class as lognormal-like.

What is the equivalent relation for the velocity incre-
ment? According to the refined self-similarity method [12]
ur ∼ (rεr)1/3 in the inertial region, while ur ∼ rε

1/2
r in

the dissipative region. In order to consider both regions at
the same time we assume a general relation

ur = c(r)ε1/β(r)
r (7)

in a mean sense (see (6, 8)). Here β(r) is a function of
r and coefficient c(r) does not necessarily scale with r.
Substituting (7) into (6) yields

〈uqr〉
〈uβr 〉q/β

∼
(
〈upr〉
〈uβr 〉p/β

) q(q−β)
p(p−β)

. (8)

This relation can be considered as a functional equation
and a solution to this equation is

〈upr〉 ∼ 〈uβ(r)
r 〉p/β(r)+b(r)p(p−β(r)), (9)

where b(r) is an arbitrary function of r. Relation (9)
is a generalization of ordinary extended self-similarity
(ESS) [1,2]. The difference between ordinary ESS and
relation (9) is that parameters used in (9) can depend
on r. Therefore we will call this type of ESS an extended
local self-similarity (ELSS).

To be consistent with the present data processing we
express the pth order structure function in terms of 3rd
order structure function as

〈upr〉 ∼ 〈u3
r〉ζp(r) (10)

Making use of (9), we are led to

ζp(r) =
p

3
− µ(r)

18
p(p− 3), (11)

where

µ(r) = − 6b(r)β(r)
1 + β(r)(3 − β(r))b(r)

· (12)

In the frame of ELSS the exponent ζp depends also on r,
and below we compare (10) and (11) with data of a DNS
for different values of r. It should be noted that the ELSS
expression (11) holds for any value of β(r), so that the
expression can be compared with the data for the inertial
separation as well as for the dissipative one.

3 Direct numerical simulation
of 3D turbulence and data representation

The simulations are done using Navier-Stokes equation
on mesh points up to 10243, Reynolds numbers ranging
from 50 to 459 [17]. Before going into the details of the
present simulation we recall a history of the DNS. In 1981
Siggia [18] started with 643 points, and Kerr [19] followed
with 1283 in 1985. In 1991 Vincent and Meneguzzi [20]
made simulation on 2403 with Rλ = 150, while the simula-
tion on 5123 points was done in 1993 by Jimenez et al. [21]
with Rλ = 170 and by Chen et al. [22] with Rλ = 200.
Since then the DNS with larger number of mesh points has
not, to our knowledge, been reported in a public Journal.
Hence we reached the largest Reynolds number on 10243

mesh points here.
Turbulence is continuously excited by the random

force which is statistically homogeneous, isotropic and
Gaussian white, and whose the spectrum form is constant
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Fig. 1. A plot of 〈u2
r〉 divided by (εη)2/3 vs. r/η for various

values of Reynolds number. An inserted solid line is propor-
tional to r2/3. Notice that all data points collapse on a single
curve in the dissipative region.

in the band spectrum limited to the band 1 < k < 3. The
code uses the pseudo spectral method and the 4th order
Runge-Kutta-Gill one. The statistical averages were taken
as the time average over tens of turnover times for lower
Reynolds numbers and over a few turnover times for the
higher Reynolds numbers (the turnover time is a period
of time during which the largest eddy turns around once).
The data of the highest Reynolds number Rλ = 459 were
obtained as rather short time average (about 1.4 eddy
turnover time). The condition for the resolution of DNS
kmaxη > 1, where kmax is the largest wavenumber al-
lowed in simulation, is satisfied for most runs, but that
of Rλ = 459 is slightly less than unity. Computations
with Rλ ≤ 259 have been done using a vector parallel
machine with 16 processors, Fujitsu VPP700E at RIKEN,
and those for higher Rλ, using Fujitsu VPP5000/56 with
32 processors at Nagoya University Computation Center.

Now turn to the data analysis. Figure 1 is a plot of
〈u2
r〉/(εη)2/3against r/η for various values of Reynolds

number, where ε is the average dissipation rate, and
η = (ν3/ε)1/4 with molecular viscosity ν. Here a straight
solid line proportional to r2/3 is inserted. It is remark-
able that all data points collapse on a single line in the
dissipative region, which indicates that all simulations are
carried out with good resolution at small scales. Although
the slope of 〈u2

r〉 could be estimated for large Reynolds
numbers as seen from Figure 1, the scaling exponents
of higher order structure functions as well as low order
ones for small Reynolds numbers can be reliably evalu-
ated only on the basis of the ESS method, i.e. by plotting
〈upr〉 against 〈u3

r〉 [1,2].
In order to know the r-dependence of ζp(r) for various

Reynolds numbers, we prepare Figure 2, in which ζp(r)
with p = 4, 6, 8 are depicted for Rλ = 69, 125, 259 and
459. (The eighth order structure function is confirmed to
converge statistically.) Note that the data for scales larger

Fig. 2. The ELSS exponents ζ4(r), ζ6(r) and ζ8(r) against r/η
for various values of Reynolds number. The data with scales
larger than integral scales are deleted from the figure.

than integral scales, i.e. the averaged scales weighted over
the energy spectrum [12], because a universal property
of turbulence is not reflected in those data. It is remark-
able that there is a dip at about r/η ∼ 10, and that it
grows in depth with Reynolds number. The exception is
the case Rλ = 69, where a dip does not appear. As the
scale increases beyond the dip, ζ4(r) and ζ6(r) tend to ap-
proach constant values, although the corresponding data
for Rλ = 259 behave in a slightly different way from other
cases. For p = 8 the situation is the same as for p = 6, but
the fluctuations are larger. It is of interest to notice that
for the largest Reynolds number 459 the flat region is ob-
served in the interval 100 < r/η < 300, which may be iden-
tified with the inertial region [12]. For smaller Reynolds
numbers it is difficult to find the flat region. For Rλ = 69
we see the flat region in the interval 10 < r/η < 30, and
the corresponding slopes for p ≥ 4 are larger than those
for Rλ = 459. However, the flat region at smaller scales for
Rλ = 69 is different from one at larger scales for Rλ = 459.

Before concluding this section we depict the probabil-
ity distribution density of the dissipation field ε for Rλ =
459 in Figure 3, where the abscissa is x ≡ (ln ε−〈ln ε〉)/σ
with σ a standard deviation of ln ε − 〈ln ε〉, and the or-
dinate is the probability density function (PDF) of x. An
inserted solid line stands for the lognormal distribution.
It is clearly seen that the distribution of the dissipation
field is lognormal in the range of small amplitudes.

4 Lognormally generated ELSS
and the 3D data

In order to analyze a nature of the r-dependence of
the local slope ζp(r), we will rely on the lognormal
expression (11). To compare ELSS relations (10, 11) with
the data, let us rewrite (11) in the following form:

ζp
p

=
(

1
3

+
µ(r)

6

)
− µ(r)

18
p. (13)
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Fig. 3. The probability distribution density of the dissipation
field ε for Rλ = 459, where the abscissa is x ≡ (ln ε−〈ln ε〉)/σ
with σ a standard deviation of ln ε − 〈ln ε〉, and the ordi-
nate is the PDF of x. An inserted solid line represents for the
lognormal distribution.

The comparison of the data with the above representation
is limited to p ≤ 6, but the intermittency coefficient µ(r)
estimated from p ≤ 6 plays a decisive role to represent
even the whole intermittency effect.

Figure 4a shows a curve ζp(r)/p vs. p for several values
of r/η with Rλ = 69. Straight lines in this figure are the
best fit lines for 1 ≤ p ≤ 6. The data points for p = 7,
which are not included for the comparison, are slightly
deviated from the lognormal lines as expected. Intermit-
tency index, µ(r), can be calculated from this figure us-
ing the slope of the fitting straight lines or the intersec-
tion point of the fitting straight lines with vertical axis
(cf. (13)). The calculated values of µ(r) are shown in the
inset of Figure 4a (µ1 corresponds to calculations using the
‘slope’ method, whereas µ2 are given by the ‘intersection’
method). In the plot of µ(r) Taylor microscale λ [12] and
an integral scale L are marked for convenience. (We have
confirmed the well-known prediction [23] λ/η = 151/4R

1/2
λ

and L/η ∼ R
3/2
λ .) For Reynolds numbers 259 and 459

we have obtained similar pictures (Figs. 4b and c). Other
Reynolds numbers give the same result.

As seen from Figures 4a to c, µ(r) substantially de-
pends on r with a typical “two-maxima” shape. Even
for Rλ = 69 in Figure 4a there is a small peak around
r/η ∼ 10. Local maximum of the µ(r) at smaller scales
exhibits a few interesting properties. (I) For Rλ = 50 the
maximum is not observed, and the first appearance of the
maximum occurs at Rλ between 50 and 69. (II) A posi-
tion of this maximum (normalized by η) is independent of
Reynolds number (see Fig. 5), and takes value `1 ≈ 14η,
which is actually the beginning of the dissipative region.
(III) Value of µ(`1) scales with Rλ as µ(`1) ∼ R0.26

λ as seen
from the inset of Figure 5. (IV) The scale λ is located on
the right descending hill.

Fig. 4. The ELSS exponents ζp(r)/p against p obtained in
the DNS for different values of r and for different Reynolds
numbers; (a) Rλ = 69, (b) Rλ = 259 and (c) Rλ = 459.
Straight lines, which are the best fit line for 1 ≤ p ≤ 6, indicate
agreement of the data with the representation (13). The insert
shows the local intermittency exponent µ(r) calculated using
the data. µ1(r) corresponds to calculations using the ‘slope’
method (described in the text), and µ2(r) does to those using
the ‘intersection’ method. Calculated Taylor length λ and the
integral length L are marked for convenience.
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Fig. 5. Different characteristics of the turbulent motion
against Reynolds number Rλ. Crosses correspond to λ nor-
malized by η against Rλ. Open circles correspond to position
`1 of the small-scale maximum of the intermittency exponent
µ(r) normalized by η. Insert shows µ(`1) against Rλ.

The flat region where µ(r) is constant appears in be-
tween r/η ∼ 100 and r/η ∼ 300 for the highest Reynolds
number Rλ = 459 (see Fig. 4c). In such an interval
µ(r) ≈ 0.25. This value is consistent with those known
in literature for observations corresponding to very large
Reynolds number [24,25].

It should be noted that strong tube-like vortices are be-
lieved to be sparsely distributed in space in fully developed
turbulence [21,26,27]. Those vortices are frequently as-
sumed as Burgers’ vortex with mean radius 10η [27]. The
energy dissipation takes place strongly around those vor-
tices. Therefore extreme intermittency of the energy dis-
sipation at this scale is consistent with the observation
of the maximum of µ(r) at scale r = 14η. On the other
hand, the usual scaling region, where ζp(r) as well as µ(r)
are independent of scale in a certain interval of scale, can
be seen only for largest Reynolds number, Rλ = 459 in
the present work. Such a scaling region is located for
r > λ; in our simulation the scaling region starts from
approximately 2.5λ.

5 Local multifractal thermodynamics

Let us imagine a grid with a local (cell-) scale r and a
global scale L, and label vertices of this grid by symbol i.
Let us make a partial average of absolute value of incre-
ment of projection of velocity v along the vector r (longi-
tudinal increment): ur = |v(xi + r) − v(xi)| over all pos-
sible directions of the vector r. Let denote this partially
averaged increment as ur. It is clear that for isotropic tur-
bulence ur will be depending only on r = |r|. Let us define
a measure:

pi =
ur

3∑N
i ur

3
(15)

(where N = (L/r)3), and a partition function

Zn =
N∑
i

pni . (16)

Let us consider scaling-like behavior of the partition
function

Zn ∼
( r
L

)τn(r)

(17)

where exponent τ(r) depends (‘weakly’) on r. Now we
can calculate corresponding scaling-like behavior of full
averaged velocity increment

〈u3n
r 〉 ∼

( r
L

)ζ?3n(r)

(18)

using average over all vertexes of the space grid

〈u3n
r 〉 =

∑N
i ur

3n

N
∼ 1
N
Zn

(
N∑
i

ur
3

)n

we can also write

〈u3n
r 〉 ∼ N (n−1)

( r
L

)τn
〈u3
r〉n. (19)

Then, equating (18, 19) we obtain

ζ?3n = −3(n− 1) + τn + ζ?3n (20)

If we use the obvious relation ζ?3n = ζ?3 ζ3n to substitute
lognormal representation of ζ3n (11) into (20) we obtain

τn = 3(n− 1)− ζ?3µ

2
n(n− 1) (21)

This is lognormal representation of the multifractal
exponent τn.

Now let us introduce local multifractal thermodynam-
ics. Let the measure pi scale as

pi ∼
( r
L

)αi(r)
. (22)

Then for r/L→ 0 we can estimate partition function as

Zn ∼
∫ ( r

L

)nα
N(α)dα (23)

where N(α) is distribution of the exponents α over the
grid vertices and we also suppose that

N(α) = ρ(α)
( r
L

)−fα
(24)

For the monofractal case N(α) =
(
r
L

)−d, but for the mul-
tifractal situation fα is a function of α. It is easy to show
(see, for instance, [11]) that for r/L→ 0

τn = nα− fα (25)
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Fig. 6. Multifractal entropy Sn vs. r/η for Rλ = 459 and for
different values of the multifractal inverse temperature nc.

if
df
dα

= n. (26)

Using lognormal representation (21) and relations (25, 26)
one can calculate lognormal representation of the multi-
fractal index f as function of n

f = 3− ζ?3µ

2
n2. (27)

In the ordinary thermodynamics the Maxwell-Boltzmann
partition function is

Zβ =
∫

e−βEN(E)dE (28)

where E is thermodynamic energy, N(E) distribution of
the energy, and β is inverse temperature. To compare the
multifractal partition with the thermodynamic one let us
rewrite (23) as

Zn ∼
∫

e− ln(L/r)αnN(α)dα (29)

From comparison of (28) with (29) we can associate
ln(L/r)α with thermodynamic energy E and the order
parameter n with inverse temperature. Then, by compar-
ing the thermodynamic relation

dS
dE

= β (30)

with the multifractal relation (26) we can associate
ln(L/r)f(n) with entropy S. Now we can calculate
the multifractal entropy corresponding to the lognormal
distribution using (27)

Sn = ln(L/r)f(n) = ln(L/r)
(

3− ζ?3 (r)µ(r)
2

n2

)
. (31)

Note that Sn is the multifractal entropy defined for 〈u3n
r 〉.

Fig. 7. Scaling of the critical inverse temperature nc with Rλ.
The straight dashed line nc = 2 (p = 6) is the line, below which
the lognormal assumption is consistent with the DNS data in
quite a satisfactory way.

In Figure 6 we show calculated results of the multi-
fractal entropy against r/η performed for different values
of multifractal inverse temperature n using (31) and the
data obtained in the DNS for Rλ = 459 (for other values
of the Reynolds number the picture is qualitatively the
same). We can see that for sufficiently large inverse tem-
peratures n some local minimum and maximum appear in
the multifractal entropy as seen in Figure 6.

In the interval of scales located between the local min-
imum indicated by arrow A and maximum by arrow B
the multifractal entropy increases with r while outside
this interval the multifractal entropy decreases with r.
Increasing the entropy with decreasing value of r means
that structures with larger scales are thermodynamically
unstable and break down, generating smaller ones, while
decreasing the entropy with decreasing value of r means
a reverse process. The former situation is called as usual
cascade process from large to small scales, while the latter
situation can be interpreted as an inverse cascade of the
generalized energy denoted by 〈u3n

r 〉. As we can see from
Figure 6 an interval with inverse cascade (or inverse inter-
val) appears only for sufficiently large inverse temperature
n (in particular, for ordinary energy 〈u2

r〉 we have no in-
terval with inverse cascade at values of Reynolds number
realized in this DNS). Let us denote the ‘critical’ value of
the inverse temperature (when the inverse interval appears
for the first time) as nc; the inverse cascade occurs only
for n ≥ nc. Figure 7 shows the dependence of the inverse
critical temperature on the Reynolds number. We can see
that nc scales (decreases) with Rλ. Note that the value of
the inverse multifractal temperature nc is related to the
corresponding value pc of the order of velocity increment
momentum as pc = 3nc (see (11, 20)).

We have good agreement between the lognormal repre-
sentation (13) and the DNS data up to p = 6 ∼ 7 and this
value seems to be independent of Reynolds number. On
the other hand, decreasing with Rλ (by scaling way) nc
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reaches the value approximately equal 2 (that corresponds
to p = 6) for Rλ ' 459. It means that for Rλ < 459 we
cannot interpret the inverse intervals as really observed,
and only beginning from Rλ ∼ 459 we can really observed
existence of such an interval. However, the scaling depen-
dence observed in Figure 7 (which is already reaching the
necessary value of n < 2, that corresponds to p < 6)
seems to be available for an extrapolation. Therefore, we
can predict appearance of the inverse interval of scales in
3D turbulence for Rλ ≥ 459.

6 Summary

1. The consistency of the DNS data with ELSS related
to the lognormal distribution of the turbulent energy
dissipation fluctuations with moderate amplitudes for
all space scales beginning from the molecular viscous
scale η and up to largest ones, and in a wide range
of Reynolds numbers: 69 < Rλ < 459, can be con-
sidered as a serious indication that turbulent energy
dissipation fluctuations have probability density func-
tion with lognormal-like behavior in its central part
at all scales larger than the molecular viscosity scale
η and for all moderate ‘turbulent’ values of Reynolds
numbers. It gives a support for substantial extension
of the original Kolmogorov-Obukhov hypothesis of the
lognormal PDF, which was suggested for the inertial
interval only.

2. The scale r/η ' 14 can be considered as an ‘universal’
(independent of Reynolds number) scale separating ef-
fectively intermittent and dissipative ranges of scales.

3. An interval of scales with inverse cascade properties
is found to appear between inertial and dissipative in-
tervals of 3D turbulence for sufficiently large values of
Reynolds number (estimated as Rλ ≥ 459).
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